Summary
Wikipedia annotation Edit Wikipedia article
The Rfam group coordinates the annotation of Rfam families in Wikipedia. This family is described by a Wikipedia entry Mir-188 microRNA precursor family. More...
This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.
Sequences
Alignment
There are various ways to view or download the seed alignments that we store. You can use a sequence viewer to look at them, or you can look at a plain text version of the sequence in a variety of different formats. More...
View options
You can view Rfam seed alignments in your browser in various ways. Choose the viewer that you want to use and click the "View" button to show the alignment in a pop-up window.
Formatting options
You can view or download Rfam seed alignments in several formats. Check either the "download" button, to save the formatted alignment, or "view", to see it in your browser window, and click "Generate".
Download
Download a gzip-compressed, Stockholm-format file containing the seed alignment for this family. You may find RALEE useful when viewing sequence alignments.
Submit a new alignment
We're happy receive updated seed alignments for new or existing families. Submit your new alignment and we'll take a look.
Secondary structure
Species distribution
Sunburst controls
HideWeight segments by...
Change the size of the sunburst
Colour assignments
Archea | Eukaryota |
Bacteria | Other sequences |
Viruses | Unclassified |
Viroids | Unclassified sequence |
Selections
Click on a node to select that node and its sub-tree.
Clear selection
This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...
Tree controls
HideThe tree shows the occurrence of this RNA across different species. More...
Loading...
Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.
Trees
This page displays the predicted phylogenetic tree for the alignment. More...
Note: You can also download the data file for the seed tree.
Motif matches
There are 1 motifs which match this family.
This section shows the Rfam motifs that match sequences within the seed alignment of this family. Users should be aware that the motifs are structural constructs and do not necessarily conform to taxonomic boundaries in the way that Rfam families do. More...
Original order | Motif Accession | Motif Description | Number of Hits | Fraction of Hits | Sum of Bits | Image |
---|---|---|---|---|---|---|
7 | RM00005 | CsrA/RsmA binding motif | 3 | 0.214 | 34.8 |
References
This section shows the database cross-references that we have for this Rfam family.
Literature references
-
Lui WO, Pourmand N, Patterson BK, Fire A Cancer Res. 2007;67:6031-6043. Patterns of known and novel small RNAs in human cervical cancer. PUBMED:17616659
-
Linsen SE, de Wit E, de Bruijn E, Cuppen E; BMC Genomics. 2010;11:249. Small RNA expression and strain specificity in the rat. PUBMED:20403161
-
Takada S, Berezikov E, Yamashita Y, Lagos-Quintana M, Kloosterman WP, Enomoto M, Hatanaka H, Fujiwara S, Watanabe H, Soda M, Choi YL, Plasterk RH, Cuppen E, Mano H Nucleic Acids Res. 2006;34:e115. Mouse microRNA profiles determined with a new and sensitive cloning method. PUBMED:16973894
-
Nielsen M, Hansen JH, Hedegaard J, Nielsen RO, Panitz F, Bendixen C, Thomsen B Anim Genet. 2010;41:159-168. MicroRNA identity and abundance in porcine skeletal muscles determined by deep sequencing. PUBMED:19917043
-
Zhou M, Wang Q, Sun J, Li X, Xu L, Yang H, Shi H, Ning S, Chen L, Li Y, He T, Zheng Y Genomics. 2009;94:125-131. In silico detection and characteristics of novel microRNA genes in the Equus caballus genome using an integrated ab initio and comparative genomic approach PUBMED:19406225
-
Strozzi F, Mazza R, Malinverni R, Williams JL Anim Genet. 2009;40:125. Annotation of 390 bovine miRNA genes by sequence similarity with other species PUBMED:18945293
-
Friedlander MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S, Rajewsky N Nat Biotechnol. 2008;26:407-415. Discovering microRNAs from deep sequencing data using miRDeep PUBMED:18392026
-
Brameier M BMC Res Notes. 2010;3:64. Genome-wide comparative analysis of microRNAs in three non-human primates PUBMED:20214803
-
Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E Cell. 2005;120:21-24. Phylogenetic shadowing and computational identification of human microRNA genes. PUBMED:15652478
-
Gu Z, Eleswarapu S, Jiang H FEBS Lett. 2007;581:981-988. Identification and characterization of microRNAs from the bovine adipose tissue and mammary gland. PUBMED:17306260
-
Ahn HW, Morin RD, Zhao H, Harris RA, Coarfa C, Chen ZJ, Milosavljevic A, Marra MA, Rajkovic A Mol Hum Reprod. 2010;16:463-471. MicroRNA transcriptome in the newborn mouse ovaries determined by massive parallel sequencing PUBMED:20215419
-
Tesfaye D, Worku D, Rings F, Phatsara C, Tholen E, Schellander K, Hoelker M Mol Reprod Dev. 2009;76:665-677. Identification and expression profiling of microRNAs during bovine oocyte maturation using heterologous approach. PUBMED:19170227
-
Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foa R, Schliwka J, Fuchs U, Novosel A, Muller RU, Schermer B, Bissels U, Inman J, Phan Q, Chien M, Weir DB, Choksi R, De Vita G, Frezzetti D, Trompeter HI, Hornung V, Teng G, Hartmann G, Palkovits M, Di Lauro R, Wernet P, Macino G, Rogler CE, Nagle JW, Ju J, Papavasiliou FN, Benzing T, Lichter P, Tam W, Brownstein MJ, Bosio A, Borkhardt A, Russo JJ, Sander C, Zavolan M, Tuschl T; Cell. 2007;129:1401-1414. A mammalian microRNA expression atlas based on small RNA library sequencing. PUBMED:17604727
-
Baev V, Daskalova E, Minkov I Comput Biol Chem. 2009;33:62-70. Computational identification of novel microRNA homologs in the chimpanzee genome PUBMED:18760970
-
Coutinho LL, Matukumalli LK, Sonstegard TS, Van Tassell CP, Gasbarre LC, Capuco AV, Smith TP Physiol Genomics. 2007;29:35-43. Discovery and profiling of bovine microRNAs from immune-related and embryonic tissues. PUBMED:17105755
-
Chiang HR, Schoenfeld LW, Ruby JG, Auyeung VC, Spies N, Baek D, Johnston WK, Russ C, Luo S, Babiarz JE, Blelloch R, Schroth GP, Nusbaum C, Bartel DP Genes Dev. 2010;24:992-1009. Mammalian microRNAs: experimental evaluation of novel and previously annotated genes PUBMED:20413612
-
Yue J, Sheng Y, Orwig KE BMC Genomics. 2008;9:8. Identification of novel homologous microRNA genes in the rhesus macaque genome PUBMED:18186931
-
Artzi S, Kiezun A, Shomron N BMC Bioinformatics. 2008;9:39. miRNAminer: a tool for homologous microRNA gene search PUBMED:18215311
-
Kozomara A, Birgaoanu M, Griffiths-Jones S Nucleic Acids Res. 2019;47:D155. miRBase: from microRNA sequences to function. PUBMED:30423142
External database links
Gene Ontology: | GO:0016442 (RISC complex); GO:0035195 (miRNA-mediated post-transcriptional gene silencing); |
Sequence Ontology: | SO:0001244 (pre_miRNA); |
MIPF: | MIPF0000113 |
External sites: | 1: http://www.mirbase.org |
Curation and family details
This section shows the detailed information about the Rfam family. We're happy to receive updated or improved alignments for new or existing families. Submit your new alignment and we'll take a look.
Curation
Seed source | Griffiths-Jones SR | ||||||
Structure source | Predicted; RNAalifold | ||||||
Type | Gene; miRNA; | ||||||
Author | Griffiths-Jones SR | ||||||
Alignment details |
|
Model information
Build commands |
cmbuild -F CM SEED
cmcalibrate --mpi CM
|
Search command |
cmsearch --cpu 4 --verbose --nohmmonly -T 25.00 -Z 2958934 CM SEQDB
|
Gathering cutoff | 72.0 |
Trusted cutoff | 72.7 |
Noise cutoff | 65.0 |
Covariance model | Download |